141400, Московская область,
г. Химки, Коммунальный пр-д, д.30 Москва 8-495-748-44-98
E-mail:  alazer@alazer.ru
Время работы: Пн-Пт 9:00 - 18:00


         


Введение

Согнул - отложил... согнул - отложил... 25 лет назад этот процесс был тяжелой ежедневной работой оператора, обслуживающего пресс. Но это еще не все: оператору нужно было постоянно перенастраивать машину, чтобы получить различные углы гиба, организовывать промежуточное складирование заготовок и выполнять многие другие действия, не связанные напрямую с изготовлением конечной детали; оператору нужно было класть заготовку опять и затем... гнуть снова... перенастраивать пресс... и гнуть снова... промежуточное хранение... и... и...

Для рабочих, имеющих дело с листовым металлом, сегодня, этот процесс кажется технологией доисторического периода. Сегодня деталь изготавливается на дружественном оператору эргономичном гибочном прессе с ЧПУ, с автоматической настройкой всех параметров гибки. Разные углы, разные профили на одном и том же инструменте - и нет проблем!

Станки с 4-мя управляемыми осями сейчас скорее стандарт, чем исключение. Прессы с 8-ю или более осями - уже не редкость, к тому же они наиболее перспективны при совместном использовании роботов с гибочными прессами.

И все это, только для того, чтобы произвести трехмерную деталь из плоского металлического листа, будь то сталь, нержавеющая сталь, алюминий, магний, медь, латунь или даже золото. Куда ни посмотрите, всюду - конструкции из листового металла. Это бум листового металла! Даже производители гибочных прессов удивляются, насколько сложные детали были произведены их заказчиками. Взаимодействие производителей станков и их заказчиков становится весьма успешным и перспективным: инженеры думают совместно, как эффективно произвести деталь на гибком оборудовании. Замена сварки гибкой может быть очень выгодна при обеспечении прочности изделию "Близко к конечной форме" - вот, что можно сказать о сходящей с гибочного пресса детали, которая имеет большое сходство с конечным изделием.

"Лист" и "гибка" не очень ассоциируются с высокой технологией. Однако, для того, чтобы гнуть "непослушный" лист необходимы специальные знания и большой опыт. Объясните техническому специалисту, который не знаком с листовым металлом, что в нашем высокотехническом мире невозможно постоянно получать при гибке угол 900, не меняя параметров настройки. То получается, а то - нет!

Без изменения программы угол будет меняться,  если, например, лист толщиной 2 мм сделан из нержавеющей стали или алюминия, если его длина  - 500 мм, 1000 мм или 2000 мм, если гибка производится вдоль или поперек волокон, если линия гибки находится в окружении пробитых или прорезанных лазером отверстий, если лист имеет различную упругую деформацию, если поверхностное упрочнение, вследствие пластической деформации, сильнее или слабее, если... если...

"Гибка" звучит как простой процесс, но в действительности, он очень сложен. Лист не волнуют никакие ценовые аргументы, даже если каталог пестрит замечательными цветами и многообещающими перспективами.

Тем не менее, в течение последних лет, производители прессов приложили много усилий, чтобы сделать процесс формообразования более гибким и более производительным. Следует отдать должное тому, кто заслуживает этого! Мы говорим о действительно высоких технологиях! Но давайте будем реалистичными: традиционные старые гибочные прессы с механическим стопором в цилиндрах и синхронизирующим валом все еще пользуются спросом во всем мире. Отправной точкой является конкретная задача гибки, а не тип станка. Простой традиционный станок или высокая технология гибки? Ответ должен быть найден вместе. Инвестиции - только тогда эффективны, когда и технический, и экономический аспекты убедительны. Принимая все вышесказанное во внимание, перейдем к главному.


         


Какой метод гибки выбрать?

Различается 2 основных метода:

Мы говорим о "воздушной гибке" или "свободной гибке", если между листом и стенками V-образной матрицы существует воздушный зазор. В настоящее время это наиболее распространенный метод.

Если лист прижат полностью к стенкам V-образной матрицы, мы называем этот метод "калибровкой". Несмотря на то, что этот метод является достаточно старым, он используется и даже должен использоваться в определенных случаях, которые мы рассмотрим далее.


1. Свободная гибка

Обеспечивает гибкость, но имеет некоторые ограничения по точности.

Основные черты:

Траверса с помощью пуансона вдавливает лист на выбранную глубину по оси Y в канавку матрицы. Лист остается "в воздухе" и не соприкасается со стенками матрицы. Это означает, что угол гибки определяется положением оси Y, а не геометрией гибочного инструмента.


Точность настройки оси Y на современных прессах  - 0,01 мм. Какой угол гибки соответствует определенному положению оси Y? Трудно сказать, потому что нужно найти правильное положение оси Y для каждого угла. Разница в положении оси Y может быть вызвана настройкой хода опускания траверсы, свойствами материала (толщина, предел прочности, деформационное упрочнение) или состоянием гибочного инструмента. 

Приведенная ниже таблица показывает отклонение угла гибки от 900 при различных отклонениях оси Y.

 

а0 10 1,50 20 2,50 30 3,50 40  4,50 50
V, мм 
 4   0,022     0,033     0,044     0,055     0,066     0,077     0,088     0,099   0,11
 6   0,033     0,049     0,065     0,081     0,097     0,113     0,129     0,145     0,161  
 8   0,044     0,066     0,088   0,11   0,132     0,154     0,176     0,198   0,22
 10   0,055     0,082   0,11   0,137     0,165     0,192   0,22   0,247     0,275  
 12   0,066     0,099     0,132     0,165     0,198     0,231     0,264     0,297   0,33
 16   0,088     0,132     0,176   0,22   0,264     0,308     0,352     0,396   0,44
 20   0,111     0,166     0,222     0,277     0,333     0,388     0,444     0,499     0,555  
 25   0,138     0,207     0,276     0,345     0,414     0,483     0,552     0,621   0,69
 30   0,166     0,249     0,332     0,415     0,498     0,581     0,664     0,747   0,83
 45 0,25   0,375   0,5   0,625   0,75   0,875   1   1,125   1,25
 55   0,305     0,457   0,61   0,762     0,915     1,067   1,22   1,372     1,525  
 80   0,444     0,666     0,888   1,11   1,332     1,554     1,776     1,998   2,22
 100   0,555     0,832   1,11   1,387     1,665     1,942   2,22   2,497     2,775  

Преимущества свободной гибка:

  • Высокая гибкость: без смены гибочных инструментов вы можете получить любой угол гибки, находящийся в промежутке между углом раскрытия V-образной матрицы (например, 860 или 280) и 1800.
  • Меньшие затраты на инструмент.
  • По сравнению с калибровкой требуется меньшее усилие гибки.
  • Можно "играть" усилием: большее раскрытие матрицы означает меньшее усилие гибки. Если вы удваиваете ширину канавки, вам необходимо только половинное усилие. Это означает, что можно гнуть более толстый материал при большем раскрытии с тем же усилием.
  • Меньшие инвестиции, так как нужен пресс с меньшим усилием.

Все это, однако, теоретически. На практике вы можете потратить деньги, сэкономленные на приобретение пресса с меньшим усилием, позволяющего использовать все преимущества воздушной гибки, на дополнительное оснащение, такое как, дополнительные оси заднего упора или манипуляторы.


Недостатки воздушной гибки:

  • Менее точные углы гибки для тонкого металла
  • Различия в качестве материала влияют на точность повторения
  • Не применима для специфических гибочных операций


Наш совет:

  1. Воздушную гибку желательно применять для листов толщиной свыше 1,25 мм; для толщины листа 1 мм и менее рекомендуется использовать калибровку
  2.  
  3. Наименьший внутренний радиус гибки должен быть больше толщины листа. Если внутренний радиус должен быть равен толщине листа - рекомендуется использовать метод калибровки. Внутренний радиус меньше толщины листа допустим только на мягком легкодеформируемом материале, например меди
  4.  
  5. Большой радиус может быть получен воздушной гибкой путем использования пошагового перемещения заднего упора. Если большой радиус должен быть высокого качества, рекомендуется только метод калибровки специальным инструментом.


Какое усилие?

По причине различных свойств материала и последствий пластичной деформации в зоне гибки, определить требуемое усилие можно только примерно.

Предлагаем Вам 3 практических способа:


1. Таблица

В каждом каталоге и на каждом прессе Вы можете найти таблицу, показывающую требуемое усилие (Р) в кН на 1000 мм длины гиба (L) в зависимости от:

  • толщина листа (S) в мм
  • предела прочности (Rm) в Н/мм2
  • V- ширины раскрытия матрицы (V) в мм
  • внутреннего радиуса согнутого листа (Ri) в мм
  • минимальной высоты отогнутой полки (B) в мм

Пример подобной таблицы:


2. Формула


1,42 - это эмпирический коэффициент, который учитывает трение между кромками матрицы и обрабатываемым материалом.

Другая формула дает похожие результаты:

3. "Правило 8"

При гибке низкоуглеродистой стали ширина раскрытия матрицы должна в 8 раз превосходить толщину листа (V=8*S), тогда P=8*S, где Р выражается в тоннах (например: для толщины 2 мм раскрытие матрицы V=2*8=16 мм означает, что Вам необходимо 16 тонн/м)


Усилие и длина гиба

Длина гиба пропорциональна усилию, т.е. усилие достигает 100% только при длине гиба 100%. Например:

 

  Усилие      Длина гиба  
 100%  3.000 мм 
 75% 2.250 мм
 50% 1.500 мм 
 25% 750 мм

Наш совет:

Если материал ржавый или не смазан, следует добавлять 10-15% к усилию гиба.


Толщина листа (S)

DIN позволяет значительное отклонение от нормальной толщины листа (например, для толщины листа 5 мм норма колеблется между 4,7 и 6,5 мм). Следовательно, Вам нужно рассчитывать усилие только для реальной толщины, которую Вы измерили, или для максимального нормативного значения.


Предел прочности на растяжение (Rm)

Здесь также допуски являются значительными и могут оказывать серьезное влияние при расчете требуемого усилия гиба. Например:

St 37-2: 340 - 510 Н/мм2

St 52-3: 510 - 680 Н/мм2


Наш совет:

Не экономьте на усилии гиба! Предел прочности на растяжение пропорционален усилию гиба и не может быть подогнан, когда Вам это нужно!

Реальные значения толщины и предела прочности являются важными факторами при выборе нужного станка с нужным номинальным усилием.


V - раскрытие матрицы

По эмпирическому правилу, раскрытие V-образной матрицы должно восьмикратно превосходить толщину листа S до S=6 мм:

 V=8*S

Для большей толщины листа необходимо:

V=10*S или V=12*S

Раскрытие V-образной матрицы обратно пропорционально требуемому усилию:

Большее раскрытие означает меньшее усилие гиба, но больший внутренний радиус;

Меньшее раскрытие означает большее усилие, но меньший внутренний радиус.


Внутренний радиус гиба (Ri)

При применении метода воздушной гибки большая часть материала подвергается упругой деформации.

После гибки материал возвращается в свое первоначальное состояние без остаточной деформации ("обратное пружинение").

В узкой области вокруг точки приложения усилия материал подвергается пластической деформации и навсегда остается в таком состоянии после гибки.

Материал становится тем прочнее, чем больше пластическая деформация. Мы называем это "деформационным упрочнением".

Так называемый "естественный внутренний радиус гибки" зависит от толщины листа и раскрытия матрицы. Он всегда больше, чем толщина листа и не зависит от радиуса пуансона.

Чтобы определить естественный внутренний радиус, мы можем использовать следующую формулу:


В случае V=8*S, мы можем сказать Ri=S*1,25

Мягкий и легкодеформируемый металл допускает меньший внутренний радиус.

Если радиус слишком маленький, материал может быть смят на внутренней стороне и растрескаться на внешней стороне гиба.

Наш совет:

Если Вам нужен маленький внутренний радиус, гните на медленной скорости и поперек волокон.


Минимальная полка (B)

Во избежание проваливания полки в канавку матрицы, необходимо соблюдать следующую минимальную ширину полки:

Угол гиба В 

1650   0,58 V 
1350   0,60 V  
1200    0,62V 
900   0,65V 
450   1,00V 
300   1,30 V  

Упругая деформация

Часть упруго деформируемого материала "спружинит" обратно после того, как усилие гиба будет снято. На сколько градусов? Это уместный вопрос, потому что важен только реально полученный угол гиба, а не рассчитанный теоретически. Большинство материалов имеют достаточно постоянную упругую деформацию. Это означает, что материал той же толщины и с тем же пределом прочности спружинит на одинаковую величину при одинаковом угле гибки.

Упругая деформация зависит от:

  • угла гибки: чем меньше угол гибки, тем больше упругая деформация;
  • толщины материала: чем толще материал, тем меньше упругая деформация;
  • предела прочности на растяжение: чем выше предел прочности, тем больше упругая деформация;
  • направление волокон: упругая деформация различна при гибке вдоль или поперек волокон.

Продемонстрируем сказанное выше для предела прочности, измеряемого при условии V=8*S:

 

 Предел прочности в Н/мм2     Упругая деформация в
200 0,5 - 1,5
250 1 - 2
450 1,5 - 2,5
600 3 - 4
800 5 - 6

Все производители гибочного инструментИ все это, только для того, чтобы произвести трехмерную деталь из плоского металлического листа, будь то сталь, нержавеющая class= textdoctextdoc/strongp align=justify class= сталь, алюминий, магний, медь, латунь или даже золото. Куда ни посмотрите, всюду - конструкции из листового металла. Это бум листового металла! Даже производители гибочных прессов удивляются, насколько сложные детали были произведены их заказчиками. Взаимодействие производителей станков и их заказчиков стан/p/strong2/tdtd class= td align=/tdnbsp;/div class=0strong class= p align=textdoc cellspacing=45овится весьма успешным и перспективным: инженеры думают совместно, как эффективно произвести деталь на гибком оборудовании. Замена сварки гибкой может быть очень выгодна при обеспечении прочности изделию class= nbsp; 0,915 textdoctextdoc/em /em class=textdoc class=/trнаправление волокон: упругая деформация различна при гибке вдоль или поперек волокон.И все это, только для того, чтобы произвести трехмерную деталь из плоского металлического листа, будь то сталь, нержавеющая сталь, алюминий, магний, медь, латунь или даже золото. Куда ни посмотрите, всюду - конструкции из листового металла. Это бум листового металла! Даже производители гибочных прессов удивляются, насколько сложные детали были произведены их заказчиками. Взаимодействие производителей станков и их заказчиков становится весьма успешным и перспективным: инженеры думают совместно, как эффективно произвести деталь на гибком оборудовании. Замена сварки гибкой может быть очень выгодна при обеспечении прочности изделию class= nbsp; 0,915 textdoctextdoc/em /em class=textdoc class=/trнаправление волокон: упругая деформация различна при гибке вдоль или поперек волокон.а учитывают упругую деформацию, когда предлагают инструмент для свободной гибки (например, угол раскрытия 850 или 860 для свободных гибов от 900 до 1800).


2. Калибровка

Точный - но негибкий способ

При этом методе угол гиба определен усилием гиба и гибочным инструментом: материал зажат полностью между пуансоном и стенками V-образной матрицы. Упругая деформация равняется нулю и различные свойства материала практически не влияют на угол гиба.

Рассчитать требуемое усилие гиба очень трудно. Самый надежный способ - выяснить необходимое усилие путем пробной гибки короткого образца на испытательном гидравлическом прессе.

Грубо говоря, усилие калибровки в 3-10 раз выше усилия свободной гибки.


Преимущества калибровки:

  • точность углов гиба, несмотря на разницу в толщине и свойствах материала
  • маленький внутренний радиус
  • большой внешний радиус
  • Z-образные профили
  • глубокие U-образные каналы
  • возможно выполнение всех специальных форм для толщины до 2 мм с помощью стальных пуансонов и матриц из полиуретана
  • превосходные результаты на гибочных прессах, не имеющих точности, достаточной для свободной гибки

Недостатки калибровки:

  • требуемое усилие гиба в 3-10 раз больше, чем при свободной гибке
  • нет гибкости: специальный инструмент для каждой формы
  • частая смена инструмента (кроме больших серий)   
textdoc
О компании |  Наше производство |  Выполненные заказы |  Изготовление корпусов |  Лазерная резка | 
Порошковая покраска |  Шелкография |  Контактная информация |  Сварка алюминия